

HoneyJar – SF-contracts-V2
18/12/2025

Trust
Security

Smart Contract Audit

Trust Security HoneyJar – SF-contracts-V2

Executive summary

Findings

Severity Total Fixed

High 0 0

Medium 4 4

Low 8 8

Centralization score

Centralized Decentralized

SIGNATURE

Category Vaults

Audited file count 7

Lines of Code 891

Auditor HollaDieWaldfee

Time period 08/12/2025 -
16/12/2025

4, Medium8, Low

FINDINGS

Trust Security HoneyJar – SF-contracts-V2

EXECUTIVE SUMMARY 1

DOCUMENT PROPERTIES 4

Versioning 4

Contact 4

INTRODUCTION 5

Scope 5

Repository details 5

About Trust Security 5

About the Auditors 5

Disclaimer 5

Methodology 6

QUALITATIVE ANALYSIS 7

FINDINGS 8

Medium severity findings 8
TRST-M-1: WhenNotPaused modifier is missing from SFVault.harvest() and SFVault.setStrategy() 8
TRST-M-2: Protocol keepers can break MultiRewards accounting via notifyRewardAmount()

reentrancy 8
TRST-M-3: Donations to BeradromeStrategy can grief MultiRewards rewards rate 9
TRST-M-4: SFVault.emergencyWithdrawFromStrategy() does not prevent subsequent strategy

deposits 10

Low severity findings 11
TRST-L-1: BaseStrategy.sweepTokens() does not account for staked assets 11
TRST-L-2: BaseStrategy.sweepTokens() fails to protect receipt tokens and permissionlessly claimed

reward tokens 11
TRST-L-3: Deposit cap can be exceeded due to donations 12
TRST-L-4: Missing reentrancy guards in SFVault.setStrategy() and

SFVault.emergencyWithdrawFromStrategy() allow protocol interaction in inconsistent state 13
TRST-L-5: MultiRewards rebates are unavailable if HENLO is configured as a fee token 14
TRST-L-6: Re-adding reward token in MultiRewards leads to corrupted state 15
TRST-L-7: BeradromeStrategy.emergencyWithdraw() does not send idle funds to vault 15
TRST-L-8: Immediate release of idle strategy assets allows for arbitrage 16

Additional recommendations 18
TRST-R-1: Local variable names should not shadow storage variables 18
TRST-R-2: Remove unused code 18
TRST-R-3: BaseStrategy does not define a storage gap 18
TRST-R-4: Document that only oBERO is supported as a reward token 18

Trust Security HoneyJar – SF-contracts-V2

TRST-R-5: Update documentation for protection against inflation attacks 18
TRST-R-6: Additional swap validation in BeradromeStrategy._executeKXSwaps() and

MultiRewards._processRebate() 19
TRST-R-7: SFVault should inherit its interface 19
TRST-R-8: Implement additional reentrancy guards 19
TRST-R-9: Avoid code duplication in SFVault.deposit() and SFVault.mint() 19
TRST-R-10: Incorrect documentation for keeper privileges 20
TRST-R-11: Restricting gas for calls to badges contract is error-prone 20
TRST-R-12: Setters and notifyRewardAmount() should check that reward token is valid 21
TRST-R-13: Incorrect documentation for CEI pattern in MultiRewards._processRebate() 22
TRST-R-14: Limit number of reward tokens in MultiRewards 22
TRST-R-15: Add token checks in BeradromeStrategy to protect against misconfigurations 23

Centralization risks 24
TRST-CR-1: Protocol admin is fully trusted 24
TRST-CR-2: SFVault keeper, strategy and pauser roles 24
TRST-CR-3: MultiRewards keeper role 24
TRST-CR-4: MultiRewards rewards distributors 24

Systemic risks 25
TRST-SR-1: Integrations with external protocols 25

Trust Security HoneyJar – SF-contracts-V2

Document properties

Versioning

Version Date Description

0.1 16/12/2025 Client report

0.2 18/12/2025 Mitigation review

Contact

Trust

trust@trust-security.xyz

Trust Security HoneyJar – SF-contracts-V2

Introduction

Trust Security has conducted an audit at the customer's request. The audit is focused on

uncovering security issues and additional bugs contained in the code defined in scope. Some

additional recommendations have also been given when appropriate.

Scope

• src/MultiRewards.sol

• src/SFVault.sol

• src/strategies/BeradromeStrategy.sol

• src/strategies/base/BaseStrategy.sol

• src/strategies/modules/MultiRewardsModule.sol

• src/strategies/modules/BeradromeModule.sol

• src/strategies/modules/BgtWrapperModule.sol

Repository details

• Repository URL: https://github.com/0xHoneyJar/SF-contracts-V2

• Commit hash: 96961b07b6f198b2c3638cec0719fa94dcdd7444

• Mitigation hash: f53b36bac970976b126e75db3085d51764dca894

About Trust Security

Trust Security has been established by top-end blockchain security researcher Trust, in order

to provide high quality auditing services. Trust is the leading auditor at competitive auditing

service Code4rena, reported several critical issues to Immunefi bug bounty platform and is

currently a Code4rena judge.

About the Auditors

HollaDieWaldfee is a distinguished security expert with a track record of multiple first places

in competitive audits. He is a Lead Auditor at Trust Security and Senior Watson at Sherlock.

Disclaimer

https://github.com/0xHoneyJar/SF-contracts-V2

Trust Security HoneyJar – SF-contracts-V2

Smart contracts are an experimental technology with many known and unknown risks. Trust

Security assumes no responsibility for any misbehavior, bugs or exploits affecting the audited

code or any part of the deployment phase.

Furthermore, it is known to all parties that changes to the audited code, including fixes of

issues highlighted in this report, may introduce new issues and require further auditing.

Methodology

In general, the primary methodology used is manual auditing. The entire in-scope code has

been deeply looked at and considered from different adversarial perspectives. Any additional

dependencies on external code have also been reviewed.

Trust Security HoneyJar – SF-contracts-V2

Qualitative analysis

Metric Rating Comments
Code complexity

Good Code is mostly simple and
well structured.

Documentation

Moderate Project is only
documented with inline
comments.

Best practices

Good Project mostly adheres to
best practices.

Centralization risks

Severe Protocol admin is fully
trusted.

Trust Security HoneyJar – SF-contracts-V2

Findings

Medium severity findings

TRST-M-1: WhenNotPaused modifier is missing from SFVault.harvest() and

SFVault.setStrategy()

• Category: Logical issues

• Source: SFVault.sol

• Status: Fixed

Description

When SFVault is paused, mint() and deposit() are unavailable. The paused state is intended to

block deposits into the strategy, and its external integration, in case of emergencies. However,

harvest() and setStrategy(),which deposit all idle funds into the strategy, can still be accessed.

This inconsistency allows the restricted KEEPER_ROLE to escalate their privileges beyond the

reward tokens and cause losses to user deposits. Since STRATEGY_ROLE is fully trusted, the

lack of the modifier in setStrategy() does not lead to a privilege escalation.

Recommended mitigation

It is recommended to add the whenNotPaused modifier to setStrategy() and harvest().

Team response

Fixed in commit 253dd67.

Mitigation review

Verified, the recommendation has been implemented.

TRST-M-2: Protocol keepers can break MultiRewards accounting via

notifyRewardAmount() reentrancy

• Category: Reentrancy issues, Privilege escalation issues

• Source: MultiRewards.sol

• Status: Fixed

Description

In MultiRewards, keepers can call getRebate(), which executes a swap with the kxRouter,

allowing the keeper to receive a callback (e.g., by swapping through a malicious pool). The

token balances of _feeToken and henloToken before and after the swap are compared to

calculate how many fee tokens were consumed and HENLO tokens received. By reentering

notifyRewardAmount() from within the swap, token balances can be manipulated to include

new rewards.

If HENLO is configured as a reward token, the HENLO rewards that are sent to MultiRewards

within the swap callback are paid out to the account. Meanwhile, if MultiRewards receives

https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L245-L269
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L219-L243
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L166-L188
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L120-L145
https://github.com/0xHoneyJar/sf-contracts-v2/commit/253dd674503a6ced3dc237ad7eb7f2208b585edb
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/MultiRewards.sol#L443-L454

Trust Security HoneyJar – SF-contracts-V2

additional _feeToken within the swap callback, they are registered as an unswapped amount

and refunded to account.

As a requirement for the attack, the MultiRewards keeper must also have keeper privileges in

a strategy such that notifyRewardAmount() can be accessed. Furthermore, keepers are

trusted not to extract rewards, which means the issue lies in the broken MultiRewards

accounting, rather than the loss of funds itself. As a result of the issue, token balances of

MultiRewards are less than the reward liabilities that must be paid to users, creating bank-run

dynamics, unless the correct reward token balance is restored via a donation.

Recommended mitigation

MultiRewards.notifyRewardAmount() should be protected with a reentrancy guard.

Team response

Fixed in commit 4b42f34.

Mitigation review

Verified, the recommendation has been implemented.

TRST-M-3: Donations to BeradromeStrategy can grief MultiRewards rewards rate

• Category: Griefing issues

• Source: BeradromeStrategy.sol, MultiRewardsModule.sol

• Status: Fixed

Description

Each call to BeradromeStrategy.harvest() calls _distributeRewardsToMultiRewards(), which

loops over all configured reward tokens and notifies MultiRewards of any reward token

balance that is greater than zero. In MultiRewards, the new rewards, including any pending

previous rewards, are then paid out over rewardsDuration seconds.

Not each call to harvest() may swap into all available reward tokens. For example, the

configured reward tokens may include HENLO and WBERA, but the keeper may intend to only

swap into HENLO and not send any WBERA rewards into MultiRewards. By front-running the

call to harvest(), an attacker can send 1 wei, such that MultiRewards is notified about the new

WBERA rewards and dilutes the existing rewardRate over another full rewardsDuration

period.

Recommended mitigation

The issue may be addressed by adopting a safe policy for harvest() calls where only the specific

reward tokens are configured that are currently used. A more robust approach is to allow the

keeper to specify the reward tokens, and to check in _distributeRewardsToMultiRewards()

that these are valid reward tokens. This solution does not introduce new trust assumptions,

since the keeper is already trusted not to extract value via swaps, and to harvest at a

reasonable frequency.

Team response

https://github.com/0xHoneyJar/sf-contracts-v2/commit/4b42f34015d4c7e36c468ce91b04eac012827792
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/modules/MultiRewardsModule.sol#L103-L118
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/infrared/MultiRewards.sol#L306

Trust Security HoneyJar – SF-contracts-V2

Fixed in commit f641009.

Mitigation review

Verified, the finding has been addressed by requiring the keeper to specify the reward tokens.

TRST-M-4: SFVault.emergencyWithdrawFromStrategy() does not prevent subsequent

strategy deposits

• Category: Logical issues

• Source: SFVault.sol

• Status: Fixed

Description

It is documented that emergencyWithdrawFromStrategy() should be used “in emergencies

when immediate withdrawal is needed”. But the function neither sets strategy to address(0),

nor pauses the contract, thus allowing further deposits into the same strategy, unless the

admin has previously paused the contract, or disables deposits atomically after making the

emergency withdrawal. This leads to unnecessary monetary risks for user assets.

Recommended mitigation

It is recommended to either call _pause() or set strategy=ISFStrategy(address(0)).

diff --git a/src/SFVault.sol b/src/SFVault.sol
index d9a087c..aab56a2 100644
--- a/src/SFVault.sol
+++ b/src/SFVault.sol
@@ -151,6 +151,7 @@ contract SFVault is
 function emergencyWithdrawFromStrategy() external onlyRole(DEFAULT_ADMIN_ROLE) {
 if (address(strategy) == address(0)) revert StrategyNotSet();
 strategy.emergencyWithdraw();
+ strategy = ISFStrategy(address(0));
 emit EmergencyWithdrawExecuted(msg.sender);
 }

Team response

Fixed in commit 6972509.

Mitigation review

Verified, the recommendation has been implemented.

https://github.com/0xHoneyJar/sf-contracts-v2/commit/f641009c1b2508ce481e6ffb353cbacb8aef178d
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L149
https://github.com/0xHoneyJar/sf-contracts-v2/commit/697250953ce095563b1d59060eed72ce708b571c

Trust Security HoneyJar – SF-contracts-V2

Low severity findings

TRST-L-1: BaseStrategy.sweepTokens() does not account for staked assets

• Category: Logical issues

• Source: BaseStrategy.sol

• Status: Fixed

Description

When sweepTokens() is called with token == _getAsset(), the function protects the managed

assets such that only excess assets can be swept. However, the logic fails to account for the

assets that have been staked, e.g. in Beradrome. Since this.totalManagedAssets() includes

assets that have been staked and are no longer held by the strategy, the excess asset balance

is underestimated. Effectively, the admin won’t be able to sweep any excess assets. This can

be mitigated by an upgrade, and excess assets are already swept automatically as part of

withdrawals.

Recommended mitigation

It is recommended that sweepTokens() matches the implementation of

getSweepableAmount(). This means the asset balance that must be protected is not

this.totalManagedAssets() but this.totalManagedAssets() – this.stakedBalance().

Team response

Fixed in commit a434faa.

Mitigation review

Verified, the recommendation has been implemented.

TRST-L-2: BaseStrategy.sweepTokens() fails to protect receipt tokens and

permissionlessly claimed reward tokens

• Category: Logical issues

• Source: BaseStrategy.sol

• Status: Fixed

Description

The only asset which is protected inside sweepTokens() is the vault’s asset. It is stated that

any other token balances are either donations or leftover rewards, which happens to be

incorrect. BaseStrategy is an abstract contract which intends to support strategy

implementations where staking assets in an external protocol mints a receipt token. This

receipt token is not protected, and can be swept by the admin. Consequently, the protection

for the asset is nullified.

Additionally, many protocols, including Beradrome, allow permissionless reward claiming. The

notion of leftover rewards is not well defined, since it is unknown which rewards are left over

from a previous harvesting and which have been permissionlessly claimed.

https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/base/BaseStrategy.sol#L98
https://github.com/0xHoneyJar/sf-contracts-v2/commit/a434faad4685cbc6c751eda4910d6d01271cd8e5
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/base/BaseStrategy.sol#L111

Trust Security HoneyJar – SF-contracts-V2

Given that the vault admin can also upgrade the strategy implementation, the checks in

sweepTokens() do not prevent malicious behavior. Instead, the issue is in the lack of the sanity

check and the permissionless reward claiming which break the function’s assumptions, so that

the admin may inadvertently transfer out rewards or staked tokens.

For example, by calling sweepTokens() with amount=type(uint256).max the admin may

expect that only leftover (i.e., dust) rewards are swept, and the amount clamped to

maxSweep. By permissionlessly claiming rewards, the swept amount can be higher than

expected, thereby griefing stakers that should have earned the rewards.

Recommended mitigation

Since the admin is fully trusted, and sweepTokens() accepts token and amount parameters by

which the swept tokens can be specified, the issue may be resolved by updating the

documentation. Another complementary option is to introduce a mapping of protected

tokens, which strategy implementations can access to manage receipt tokens and reward

tokens. This functionality can be exposed to the vault admin. Finally, sweepTokens() and

getSweepableAmount() can be defined as virtual functions so that their implementation can

be adjusted depending on the strategy.

Team response

Fixed in commit f53b36b.

Mitigation review

Verified, the recommendation has been implemented. BeradromeStrategy implements

_isStrategyProtectedToken(), which protects oBERO and reward tokens by default. The vault

admin can use setProtectedToken() and clearProtectedToken() to override the standard

protection.

TRST-L-3: Deposit cap can be exceeded due to donations

• Category: Logical issues

• Source: SFVault.sol

• Status: Fixed

Description

SFVault.deposit() and SFVault.mint() check that the new total assets don’t break the

depositCap, which is documented as a “hard cap on total managed assets”. However, the

depositCap can be bypassed via donations to SFVault, BeradromeStrategy, or a deposit in

Beradrome on behalf of BeradromeStrategy.

Since a donation is shared among all users, increasing the total assets in this way causes a loss

to the user making the donation, except for the unlikely case where there is just one depositor.

Recommended mitigation

Given that donations are shared pro-rata, the risk can likely be acknowledged. Still, it must be

noted, and should be documented, that depositCap fails to impose a hard limit on the assets

under management.

https://github.com/0xHoneyJar/sf-contracts-v2/commit/f53b36bac970976b126e75db3085d51764dca894
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L257-L260
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L58

Trust Security HoneyJar – SF-contracts-V2

A strict depositCap can be implemented by not recognizing any assets beyond those that enter

the protocol via deposit() or mint(). Any additional assets can be swept by the admin.

Team response

Fixed in commit cae5b26.

Mitigation review

The documentation has been updated to clarify that depositCap only restricts deposits via

mint() and deposit(), but that totalManagedAssets() can grow above the depositCap due to

donations.

TRST-L-4: Missing reentrancy guards in SFVault.setStrategy() and

SFVault.emergencyWithdrawFromStrategy() allow protocol interaction in inconsistent

state

• Category: Reentrancy issues

• Source: SFVault.sol

• Status: Fixed

Description

The root cause for the vulnerability is the lack of reentrancy guards in SFVault.setStrategy()

and SFVault.emergencyWithdrawFromStrategy(). Suppose that the call to

strategy.emergencyWithdraw() in SFVault.setStrategy() issues a callback to an untrusted

address. Calls to SFVault.deposit() from within this callback make the deposit into the old

strategy instead of the new one. When execution is resumed inside SFVault.setStrategy(), the

strategy variable is set to the new _strategy, thus making deposits into the old strategy

inaccessible. This loss is shared among all depositors. Even worse, if a keeper escalates their

privileges and uses this callback to call SFVault.harvest(), all assets, not just new deposited

ones, are deposited into the old strategy and become inaccessible.

Similar attack vectors exist in SFVault.emergencyWithdrawFromStrategy(). As an example, the

emergency withdrawal may lead to an observed drop in totalAssets(), allowing users to

deposit and receive more shares than they should be able to. This could be caused by an

external protocol integration that first resets the balance owned by the HoneyJar strategy,

then performs a callback, and then transfers the withdrawn tokens to HoneyJar.

The finding is reported as Low severity as there is no intention to support strategies with such

callbacks for now, so the attack vector remains theoretical.

Recommended mitigation

It is recommended to apply reentrancy guards to SFVault.setStrategy() and

SFVault.emergencyWithdrawFromStrategy(). Furthermore, in TRST-R-8, more reentrancy

guards are recommended to reduce the risk of reentrancy attacks.

Team response

Fixed in commit cf59d64.

Mitigation review

https://github.com/0xHoneyJar/sf-contracts-v2/commit/cae5b26a6689e2a507644b7687e44543d93b0579
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L120-L145
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L151-L155
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L134
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L166-L188
https://github.com/0xHoneyJar/sf-contracts-v2/commit/cf59d640e97d1522130dc65dcdd7311889d90f5d

Trust Security HoneyJar – SF-contracts-V2

Verified, the recommendation has been implemented.

TRST-L-5: MultiRewards rebates are unavailable if HENLO is configured as a fee token

• Category: Logical issues

• Source: MultiRewards.sol

• Status: Fixed

Description

MultiRewards is not compatible with HENLO as a fee token, since that implies the input and

output tokens in the rebate swap are equal, but this is not allowed in the kxRouter. While in

the deployment scripts only BGT wrappers and oBERO are configured as fee tokens, HENLO is

a regular token, so it should be possible to use it as a fee token.

If HENLO is configured as a fee token, rebates are temporarily stuck, and HENLO must be

removed again as a fee token, causing a loss of fees for the treasury and delayed reward

payouts for users.

Recommended mitigation

It is recommended to make the contract compatible with HENLO as a fee token.

diff --git a/src/MultiRewards.sol b/src/MultiRewards.sol
index 27b88b2..cf9031a 100644
--- a/src/MultiRewards.sol
+++ b/src/MultiRewards.sol
@@ -422,7 +422,7 @@ contract MultiRewards is MultiRewardsBase {
 }

 // Swap rebate to HENLO
- if (rebateAmount > 0) {
+ if (rebateAmount > 0 && _feeToken != henloToken) {
 // Validate swap parameters
 if (swap.input.amount == 0) revert ZeroSwapAmount();
 if (swap.input.token != _feeToken) revert InvalidSwapInputToken();
@@ -456,6 +456,13 @@ contract MultiRewards is MultiRewardsBase {
 rewards[account][_feeToken] += unswapped;
 }

+ emit RewardPaid(account, henloToken, henloReceived);
+ } else if (rebateAmount > 0 && _feeToken == henloToken) {
+ henloReceived = rebateAmount;
+
+ // Transfer HENLO to user
+ ERC20(henloToken).safeTransfer(account, henloReceived);
+
 emit RewardPaid(account, henloToken, henloReceived);
 }
 }

Team response

Fixed in commit 5197a89.

Mitigation review

Verified, the recommendation has been implemented.

https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/MultiRewards.sol#L439
https://berascan.com/address/0x43Dac637c4383f91B4368041E7A8687da3806Cae#code
https://github.com/0xHoneyJar/sf-contracts-v2/commit/5197a8918d64065722dcdb32a9787dab8151db1e

Trust Security HoneyJar – SF-contracts-V2

TRST-L-6: Re-adding reward token in MultiRewards leads to corrupted state

• Category: Logical issues

• Source: MultiRewards.sol

• Status: Fixed

Description

If a token is added as a reward token in MultiRewards, then removed and re-added, reward

accounting is corrupted. For the re-added reward, rewardPerTokenStored starts at zero,

while userRewardPerTokenPaid maintains its old values. This can cause an underflow in

earned(), where the latter is subtracted from the former. As a result, users are unable to claim

their rewards.

Recommended mitigation

To make the requirement that reward tokens can’t be re-added explicit, it is recommended

introduce a mapping of existing and removed reward tokens, and to check the mapping in

addReward().

diff --git a/src/MultiRewards.sol b/src/MultiRewards.sol
index 27b88b2..8a51cda 100644
--- a/src/MultiRewards.sol
+++ b/src/MultiRewards.sol
@@ -109,6 +109,8 @@ contract MultiRewards is MultiRewardsBase {
 /// @notice Tracks which reward tokens are fee tokens (claimed via getRebate)
 mapping(address => bool) public isFeeToken;

+ mapping(address => bool) public usedRewardTokens;
+
 /*//
 CONSTRUCTOR
 //*/
@@ -173,6 +175,8 @@ contract MultiRewards is MultiRewardsBase {
 external
 onlyAdmin
 {
+ require(!usedRewardTokens[_rewardsToken], "invalid reward token");
+ usedRewardTokens[_rewardsToken] = true;
 _addReward(_rewardsToken, _rewardsDistributor, _rewardsDuration);
 }

Team response

Fixed in commit 8da9271.

Mitigation review

Verified, the recommendation has been implemented.

TRST-L-7: BeradromeStrategy.emergencyWithdraw() does not send idle funds to vault

• Category: Logical issues

• Source: BeradromeStrategy.sol

• Status: Fixed

https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/interfaces/IMultiRewards.sol#L77
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/infrared/MultiRewards.sol#L48
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/infrared/MultiRewards.sol#L154
https://github.com/0xHoneyJar/sf-contracts-v2/commit/8da9271b16f99ebab86683ffeb24374f41b796be

Trust Security HoneyJar – SF-contracts-V2

Description

While idle funds in BeradromeStrategy don’t count towards SFVault.totalAssets(),

beforeWithdraw() and harvest() monetize the idle funds. Similarly, emergencyWithdraw()

should not only unstake all funds from Beradrome, but also send idle funds to the vault. While

idle funds can be swept by the admin, they are temporarily lost from SFVault’s tracking and

not re-deposited into the new strategy.

Recommended mitigation

Idle funds should be sent to the vault as part of the emergency withdrawal.

diff --git a/src/strategies/BeradromeStrategy.sol
b/src/strategies/BeradromeStrategy.sol
index 0b348d0..1e613bc 100644
--- a/src/strategies/BeradromeStrategy.sol
+++ b/src/strategies/BeradromeStrategy.sol
@@ -280,6 +280,10 @@ contract BeradromeStrategy is BaseStrategy, BeradromeModule,
MultiRewardsModule,
 if (balance > 0) {
 _beradromeUnstakeToVault(balance);
 }
+ uint256 idle = IERC20(_getAsset()).balanceOf(address(this));
+ if (idle > 0) {
+ IERC20(_getAsset()).safeTransfer(vault, idle);
+ }
 }

Team response

Fixed in commit 7857c2e.

Mitigation review

Verified, the recommendation has been implemented.

TRST-L-8: Immediate release of idle strategy assets allows for arbitrage

• Category: Sandwiching issues

• Source: SFVault.sol, BeradromeStrategy.sol

• Status: Fixed

Description

SFVault.harvest() immediately stakes any underlying assets that have been returned by the

call to ISFStrategy.harvest(). Since BeradromeStrategy does not include idle assets in

totalManagedAssets(), SFVault.totalAssets() is immediately increased by the amount of idle

assets that have been harvested.

This increase in totalAssets() can be profitably sandwiched since deposits and withdrawals can

be made immediately and at zero cost.

For BeradromeStrategy, which is the only strategy implemented thus far, the risk may be

accepted. Idle funds in BeradromeStrategy can only exist due to donations because

Beradrome deposits don’t generate any rewards in the underlying asset, and reward tokens

should be sent to MultiRewards.

https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/BeradromeStrategy.sol#L145-L159
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/BeradromeStrategy.sol#L221-L225
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/BeradromeStrategy.sol#L275-L283
https://github.com/0xHoneyJar/sf-contracts-v2/commit/7857c2e256e5063fcec4129cc7b2c9ddedd6fb6e
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L181-L185
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/BeradromeStrategy.sol#L168-L174

Trust Security HoneyJar – SF-contracts-V2

Recommended mitigation

The issue can be mitigated by implementing a mechanism to slowly release underlying assets

before they are recognized in totalAssets(). This requires separate tracking of released and

unreleased assets in SFVault. Another option is to implement deposit fees that make the cost

of a deposit higher than the profit gained in the arbitrage. A third option is to only monetize

such donations by sending them to MultiRewards instead of SFVault since MultiRewards has

a timed release by default.

Team response

Fixed in commit 3928d21.

Mitigation review

The issue has been mitigated with a profit locking mechanism. Each time harvest() is called,

the harvested asset balance is recognized as profit and released linearly over

profitUnlockTime.

https://github.com/0xHoneyJar/sf-contracts-v2/commit/3928d21d911d54c953d3abb564378f4332a9cc62

Trust Security HoneyJar – SF-contracts-V2

Additional recommendations

TRST-R-1: Local variable names should not shadow storage variables

It is error-prone to declare local variables with the same names as storage variables. The

affected variable names are _beradromePlugin, _vTokenRewarder, _oberoToken,

_multiRewards, _rewardTokens, _rewardVault and _bgtConverter in

BeradromeStrategy.initialize(). Also affected are _bgtConverter and _multiRewards in their

respective setters.

TRST-R-2: Remove unused code

• CannotSweepAsset error is never used.

• SwapFailed error is never used.

• AlreadyInitialized error is never used.

TRST-R-3: BaseStrategy does not define a storage gap

Since BaseStrategy is inherited by BeradromeStrategy, upgrading BaseStrategy with more

storage variables would corrupt the storage layout. Therefore, a __gap with 49 slots should

be defined. Additionally, although not necessary, BeradromeStrategy and SFVault may

implement a __gap so that they can be safely inherited from.

TRST-R-4: Document that only oBERO is supported as a reward token

In BeradromeModule._beradromeClaimObero(), all rewards in _vTokenRewarder are claimed

by calling getReward(). However, only oBERO is accounted for inside

_beradromeClaimObero() and the upstream BeradromeStrategy.harvest() function. This is

intentional as it is assumed that _vTokenRewarder will not support any additional reward

tokens. It is recommended to add documentation for this assumption. Additional rewards

could be swept by BaseStrategy.sweepTokens().

TRST-R-5: Update documentation for protection against inflation attacks

It is stated that minDeposit, as well as how donations are treated, are mechanisms to protect

against inflation attacks. However, both protections can be bypassed. A deposit with the

minimum amount can be followed by a withdrawal that leaves just 1 wei shares in the vault.

Meanwhile, a donation into SFVault is immediately recognized as part of the totalAssets().

https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/base/BaseStrategy.sol#L29
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/BeradromeStrategy.sol#L36
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/BeradromeStrategy.sol#L35
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/modules/BeradromeModule.sol#L87-L99
https://github.com/0xHoneyJar/SF-contracts-V2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L61
https://github.com/0xHoneyJar/SF-contracts-V2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/BeradromeStrategy.sol#L170
https://github.com/0xHoneyJar/SF-contracts-V2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol#L212

Trust Security HoneyJar – SF-contracts-V2

Since OpenZeppelin’s ERC4626 implementation protects against inflation attacks by default

with virtual shares, there is no security risk. The comments should be updated to specify that

these mechanisms are not used for inflation protection. Instead, a comment may be added

referring to OpenZeppelin’s inflation protection. Since it is not needed, and can be bypassed,

it is recommended that minDeposit is removed.

TRST-R-6: Additional swap validation in BeradromeStrategy._executeKXSwaps() and

MultiRewards._processRebate()

It is recommended to add the following validations in _executeKXSwaps():

• swap.input.wrap == false. Native input tokens are not supported.

• swap.output.unwrap == false. Native output tokens are not supported.

• swap.output.token is a configured reward token.

• swap.feeData.surplusFeeBps and swap.feeData.referrerFeeBps are zero so that no

optional fees are paid.

Also, the following validations should be included in _processRebate():

• swap.input.wrap == false. Native input tokens are not supported.

• swap.output.unwrap == false. Native output tokens are not supported.

• swap.feeData.surplusFeeBps and swap.feeData.referrerFeeBps are zero so that no

optional fees are paid.

Given the keeper’s trust assumptions, the above suggestions are optional.

TRST-R-7: SFVault should inherit its interface

As a best practice, SFVault should inherit ISFVault to avoid discrepancies.

TRST-R-8: Implement additional reentrancy guards

It is recommended to add reentrancy guards to the following functions, as an additional layer

of safety, even though no vulnerabilities could be identified:

• BeradromeStrategy.emergencyWithdraw()

• SFVault.transfer() / SFVault.transferFrom() (override from ERC20Upgradeable)

TRST-R-9: Avoid code duplication in SFVault.deposit() and SFVault.mint()

The overridden deposit() and mint() implementations perform a check that the deposited

assets do not break the depositCap and then the parent implementations are called. However,

https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/SFVault.sol
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/interfaces/ISFVault.sol
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/BeradromeStrategy.sol#L275-L283

Trust Security HoneyJar – SF-contracts-V2

this logic is redundant with the parent implementations which already check maxDeposit()

and maxMint(). The following simplification is recommended:

diff --git a/src/SFVault.sol b/src/SFVault.sol
index d9a087c..d05b3f8 100644
--- a/src/SFVault.sol
+++ b/src/SFVault.sol
@@ -226,11 +226,6 @@ contract SFVault is
 // Prevent inflation attacks with minimum deposit
 require(assets >= minDeposit, "Deposit below minimum");

- if (depositCap != 0) {
- uint256 newTotalAssets = totalAssets() + assets;
- if (newTotalAssets > depositCap) revert
DepositCapExceeded(newTotalAssets, depositCap);
- }
-
 // Standard 4626 mint logic first
 shares = super.deposit(assets, receiver);

@@ -253,12 +248,6 @@ contract SFVault is
 uint256 assetsNeeded = previewMint(shares);
 require(assetsNeeded >= minDeposit, "Deposit below minimum");

- // Check deposit cap BEFORE minting (consistent with deposit())
- if (depositCap != 0) {
- uint256 newTotalAssets = totalAssets() + assetsNeeded;
- if (newTotalAssets > depositCap) revert
DepositCapExceeded(newTotalAssets, depositCap);
- }
-
 assetsIn = super.mint(shares, receiver);

TRST-R-10: Incorrect documentation for keeper privileges

• Validation of receiver does not prevent a draining of rewards. Rewards can still be

drained via malicious swap parameters. The comment should say that tokens can’t be

swapped to an incorrect receiver.

• Underlying fee tokens can be lost by providing bad swap parameters. The

documentation states they can’t be lost.

TRST-R-11: Restricting gas for calls to badges contract is error-prone

By restricting the gas with which badgesPercentageOfUser() is called, it is possible that the call

runs out of gas but function execution in computeFees() continues with the reserved gas. Since

badgesPercentageOfUser() only receives 100k gas, the reserved gas is insufficient to execute

the subsequent ERC20 transfer. Therefore, an OOG revert can’t be abused by a malicious

keeper. Still, there is no reason why an OOG failure should be accepted since the admin can

replace a reverting badges contract, so it is recommended to make a regular Solidity function

call.

diff --git a/src/MultiRewards.sol b/src/MultiRewards.sol
index 27b88b2..ab4ec09 100644
--- a/src/MultiRewards.sol
+++ b/src/MultiRewards.sol

https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/strategies/BeradromeStrategy.sol#L234
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/MultiRewards.sol#L363-L366
https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/MultiRewards.sol#L484

Trust Security HoneyJar – SF-contracts-V2

@@ -479,15 +479,7 @@ contract MultiRewards is MultiRewardsBase {
 return amount; // No badges contract = all to treasury
 }

- // Gas-limited external call to prevent DOS from malicious badges contract
- (bool success, bytes memory data) =
- address(badgesContract).staticcall{gas:
100_000}(abi.encodeCall(IBadges.badgesPercentageOfUser, (user)));
-
- if (!success || data.length < 32) {
- return amount; // On failure, all goes to treasury (safe default)
- }
-
- uint256 badgePercentageBps = abi.decode(data, (uint256));
+ uint256 badgePercentageBps = badges.badgesPercentageOfUser(user);
 if (badgePercentageBps == 0) {
 return amount; // No badge = all to treasury
 }

TRST-R-12: Setters and notifyRewardAmount() should check that reward token is valid

MultiRewards allows the admin to access setters for tokens that have not been added as

reward tokens. Similarly, notifyRewardAmount() can be called for any token, though it would

be an admin error to configure a rewardsDistributor for an invalid token and downstream

division by rewardsDuration would cause a revert. It is recommended to add explicit checks

that only configurations for valid reward tokens can be changed. Valid reward tokens can be

identified with an invariant that rewardsDuration > 0  token is a reward token.

--- a/src/MultiRewards.sol
+++ b/src/MultiRewards.sol
@@ -173,6 +173,7 @@ contract MultiRewards is MultiRewardsBase {
 external
 onlyAdmin
 {
+ require(_rewardsDuration > 0, "invalid rewards duration");
 _addReward(_rewardsToken, _rewardsDistributor, _rewardsDuration);
 }

@@ -181,6 +182,7 @@ contract MultiRewards is MultiRewardsBase {
 * @param _rewardsToken Reward token address to remove
 */
 function removeReward(address _rewardsToken) external onlyAdmin {
+ require(rewardData[_rewardsToken].rewardsDuration != 0, "invalid reward
token");
 _removeReward(_rewardsToken);
 }

@@ -255,6 +257,7 @@ contract MultiRewards is MultiRewardsBase {
 * @param _rewardsDistributor New distributor address
 */
 function setRewardsDistributor(address _rewardsToken, address
_rewardsDistributor) external onlyAdmin {
+ require(rewardData[_rewardsToken].rewardsDuration != 0, "invalid reward
token");
 rewardData[_rewardsToken].rewardsDistributor = _rewardsDistributor;
 emit RewardsDistributorUpdated(_rewardsToken, _rewardsDistributor);
 }
@@ -287,6 +290,7 @@ contract MultiRewards is MultiRewardsBase {
 * @param _rewardsDuration New duration in seconds
 */
 function setRewardsDuration(address _rewardsToken, uint256 _rewardsDuration)
external onlyAdmin {

Trust Security HoneyJar – SF-contracts-V2

+ require(rewardData[_rewardsToken].rewardsDuration != 0, "invalid reward
token");
 _setRewardsDuration(_rewardsToken, _rewardsDuration);
 }

@@ -301,6 +305,7 @@ contract MultiRewards is MultiRewardsBase {
 * @dev Only callable by the designated rewards distributor
 */
 function notifyRewardAmount(address _rewardsToken, uint256 reward) external {
+ require(rewardData[_rewardsToken].rewardsDuration != 0, "invalid reward
token");
 if (msg.sender != rewardData[_rewardsToken].rewardsDistributor) {
 revert NotRewardDistributor();
 }

TRST-R-13: Incorrect documentation for CEI pattern in MultiRewards._processRebate()

In _processRebate(), it is documented that the CEI (Checks-Effects-Interactions) pattern is

followed. This is incorrect due to the previous swap and ERC20 transfer. In fact, the function

can’t follow the CEI pattern since the swap has to occur before the accounting of the refund.

Thus, the comment is incorrect and should be removed. Reentrancy issues are addressed in

separate findings.

TRST-R-14: Limit number of reward tokens in MultiRewards

To prevent issues arising due to excessive gas consumption of reward calculations, it is

recommended to implement a constant that specifies the maximum number of reward

tokens. A reasonable number is 10, to match the original InfraredVault implementation.

diff --git a/src/MultiRewards.sol b/src/MultiRewards.sol
index 27b88b2..49a0650 100644
--- a/src/MultiRewards.sol
+++ b/src/MultiRewards.sol
@@ -82,6 +82,10 @@ contract MultiRewards is MultiRewardsBase {
 /// @notice Basis points denominator (100% = 10000)
 uint256 private constant BPS_DENOMINATOR = 10_000;

+ /// @notice Maximum number of reward tokens that can be supported
+ /// @dev Limited to prevent gas issues with reward calculations
+ uint256 public constant MAX_NUM_REWARD_TOKENS = 10;
+
 /*//
 STATE
 //*/
@@ -173,6 +177,7 @@ contract MultiRewards is MultiRewardsBase {
 external
 onlyAdmin
 {
+ require(rewardTokens.length < MAX_NUM_REWARD_TOKENS, "too many reward
tokens");
 _addReward(_rewardsToken, _rewardsDistributor, _rewardsDuration);
 }

https://github.com/0xHoneyJar/sf-contracts-v2/blob/96961b07b6f198b2c3638cec0719fa94dcdd7444/src/MultiRewards.sol#L453
https://github.com/infrared-dao/contracts/blob/7a823508232dd8dfbf2f311970bf4ed9426fb31d/src/core/InfraredVault.sol#L27-L29

Trust Security HoneyJar – SF-contracts-V2

TRST-R-15: Add token checks in BeradromeStrategy to protect against

misconfigurations

BeradromeStrategy can hold balances of different tokens. These are the asset, oBERO, BGT

wrappers and reward tokens. To avoid misconfigurations, it is recommended to check in the

initializer that asset is not oBERO and not any of the BGT wrappers, and in addRewardToken()

that the new reward token is not asset.

The checks in the initializer are needed to prevent a scenario where the keeper can swap the

asset, and the checks in addRewardToken() prevent the asset from being sent to

MultiRewards.

Trust Security HoneyJar – SF-contracts-V2

Centralization risks

TRST-CR-1: Protocol admin is fully trusted

The protocol admin, i.e., the DEFAULT_ADMIN_ROLE in SFVault and ADMIN in MultiRewards,

is fully trusted. SFVault and strategies are upgradeable, allowing the DEFAULT_ADMIN_ROLE

to access all funds. In MultiRewards, the ADMIN can use recoverERC20() to recover all tokens,

including staking and reward tokens.

TRST-CR-2: SFVault keeper, strategy and pauser roles

KEEPER_ROLE can call harvest() and is trusted to manage rewards and provide swap

parameters. It cannot access strategy deposits.

STRATEGY_ROLE is fully trusted inside SFVault, since by providing a malicious _strategy, user

funds can be stolen.

PAUSER_ROLE can call pause() which pauses strategy deposits, while unpause() must be called

by the admin.

TRST-CR-3: MultiRewards keeper role

The keeper in MultiRewards() can call getRebate() which claims rebates for fee tokens. It is

trusted to provide swap parameters, and therefore a malicious keeper can cause a loss of all

rebates.

TRST-CR-4: MultiRewards rewards distributors

The rewardsDistributor for a reward token can call notifyRewardAmount(). By timing the call,

certain users can be benefitted, and the rewardRate can be diluted by frequent calls. In the

protocol’s setup, rewardsDistributors are set to strategies, which in turn are harvested by

strategy keepers.

Trust Security HoneyJar – SF-contracts-V2

Systemic risks

TRST-SR-1: Integrations with external protocols

The project integrates with Kodiak for swaps, Beradrome for strategy deposits, and Infrared,

Miso, Bearn and BeraPaw for wrapping BGT. External integrations are considered trusted, and

any issue in an external protocol can lead to a loss of users’ assets and / or reward tokens.

		2025-12-18T11:34:23+0200
	Trust

